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I. INTRODUcTION

In various interpolation problems of experimental and pointwise
computer-constructed data the convexity and smoothness (continuous
differentiability to the second order) of the interpolant is either
implied by the nature of the underlying process or expressly desired.
It is well known that classical (Lagrange, Hermite, etc.) and ordinary
spline interpolation procedures do not in general produce convex inter-
polants for convex data a~4 more often than not introduce spurious• oscillations between data points. We introduce here a technique for
interpolation and display of convex data without such drawbacks. Its
basis is provided by an explicit solution of the convex two-point

• Hermite interpolation problem by a special rational function. To meet
the smoothness requirement, a piecewise rational function, called an H-
Spline, is constructed. The feasibility of the construction is equivalent
to the existence and uniqueness of a solution of a nonlinear system of
equations which may be brought into the fixed point form x = Fx. Here x
is an n-dimensional vector whose dimension depends on the number of data
points and whose components represent linear functions of the slopes to be
assigned at the internal data points. Section II contains the basic defi-
nitions and preparatory remarks. A proof fo~ the existence and uniqueness
of an H-Spline for any finite number of data points, based on Brouwer’s
Fixed Point Theorem and the antitonicity of the operator F, is given in
Section III. The general mathematical background for our considerations
is covered in1’2’3. A companion report1’ describes in detail the actual
construction of H-Splines on a computer.

L~ .
‘ II .  DEFINITIONS

We begin with the following definitions:

Definition. A table T: (at, Yj) , i = 0, 1, .., , n + 1, such
that a = a0<a1 <... <a~<a~.1.J = b and s0<s 1 < ...<Sfl_ l <sn, where
s1 = (yj+1 - y1)/(aj+1 - a1), ~ = 0, 1, ..., n, is called a convex table.I

Definition. Let R~ be the class of rational functions of order
2 with at most one finite pole. Given a strictly monotone increasing
sequence of rea l numbers a0, a1, . . .,  afl+j, an H-Spline with joints
aj, i = o, 1, . ..,  n + 1, is a function H(x) defined for a ao~x~an+l
= b that satisfies the following three conditions:

1 Collatz, [.. , Functional Analysis and Numerical Mathematics, (pp. 350-
361), Academic Press , New York and London, 1966.

2
Ortega, J.M. and Rheinboldt, W.C., Iterative Solution of Nonlinear
~quations in Several Variables, (pp. 432-446), Academic Press, 1970.

3
7’ . ‘

. Rall , L. B., Nonlinear Functional Analysis and Applications, (pp . 16-18) ,
Academic Press, 1971.

I.
Egerland, W. 0. and Wisniewski, H. L., “Convex Interpolation with H-
Splines,” to appear. 
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a. In each interval (ai, ai+1) for i = o, 1, ..., n, H(x)
is given by some hj€R~.

b. H(x)€C2 [a,b], i.e., H(x) is twice continuously
differentiable on (a,b].

c. H’’(x)>o, ~~~~~ i.e., H(x) is strictly convex on[a ,b]. I

Since hj(x) (Aoi+Aijx + A2~x
2)/(B0j + Bijx), ~~~~~~~A2i*o, H(x) , as a plane curve, is represented by an arc of an hyperbola

(or a parabola in case Bli o) between adjacent joints. Hence the name •

H-Spline was suggested.

Definition. Let 2. and r be positive numbers. A function f(x)
solves the “convex two-point Herinite interpolation problem” on the
interval [a,b]if(1)f(a) = o, f(b) = 0, (2)f’(a) a 

~~~~~~ f’(b) — r, and
(3) f’’(x) >0, acx~~.

According to this definition, the function

B(x) = B(x;a ,b,L,r)

solves the convex two-point Hermite interpolation problem for arbitrary I , ’a, b, a<b, and positive t and r. 8(x) is the simplest H-Spline. We
note that

2 02 2(1. ~2
B’’ (x) = — 

#~ 1’ (1)
[L(x-a) + r(b-x)]3

III. EXISTENCE AND UNIQUENESS PROOF

With the definitions given in Section II, the following theorem
holds:

Theorem. Given a convex table T: (aj,yj), i — 0, 1, ...,
n + 1, and endcondition! y

~
,, y~,1, y~<s0, Sn<Y~+ls there exists a uniqueH-Spline such that H(aj) yj, i — 0, 1, ..., n + 1, H’(a0) — y~, and

H (a~,1) =

Proof. Let Yj, i 1, 2~ ..., n, be a sequence of slopes such
that ~~~~~~~~~~~~~~~~~~~~~~~~~ and consider the function

6
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ii(x) a L1(x) + B1(x) , 
~~~ 

x~ a1~1, i • o, 1, .. .,  n, (2)

where Li(x) = y~ + sj(x_a 1) and B1(x) = B(x; a~;a~~1 s~, -
y~~1 — s1). fl(x) is strictly convex on [a,b], ii(a1) — y~, ii’(a~)
and H(x)eC [a,b]. H(x) is an H-Spline if and only if the continuity
requirements

B~~1(a.) = B~(a.)>o, j • 1, 2, ..., n, (3)

are satisfied. Using (1) and setting

= x~s~~1 + (l
~
x
~

)s
~
, i = 1, 2, ...n ,

(a1 
- a0~~

/2(s - ~1; \1/2
K1 

- 

\a 2 - a
1/ ‘~2 

- 

~i /
‘a. - a. ~1/2 Is. - s. ~1/2

K. = ( i  1—1 ) (1—1 1—2 ) , i. = 2, ..., n — 1 ,
1 ~a. - a./ ~s. - S. /1+1 1 1+1 i

I a  - a ~1/2 Is - s V/2i n  n-l i i n-i n-2 i
~n ’ a • - a ’ t ;;-i~ - s  ~‘ n+l n F ‘‘n i l  n

(3) is equivalent to the existence of a solution of the system
• (1 - x ) ’/~x = f ( x )1 (i — x 2)

1/2 + K 1 
1 2

4 

(1 — x  ) 1/2
x. = i+l 

= f~
(x
~_i

x
~,1

), i 2 ,..., n 1
‘ (1 — x.~ 1)

’/2+ K.x. 1
1/2

x = 1 = f ( x 1) (4)
l + K x  1/2 ~~~~~

nn - l

in the open cube I~: o<x1<1, i = 1, 2 , ...n. This, in turn, is equiva-lent to the existence of a fixed point in I~ of the mapping F: I CR~wR~where for ~T = (x1, x2, .. .,  x~) Fx is represented by the column”vector

~~~~~ .~ ~~~- 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~. . ______________
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(f
~(X)

Fx= f~(x)

\f;,x

The mapping F has the following properties:

(P1) F is continuous Ofl I~.

(112) FI~CI~ .
(P3) F is antitone on
(P4) If v, wel and v(w, then v Fw and

w = F v imply v w.

(P1) and (P2) are obvious, and (P3) follows from the mean value theorem
ana 3f4(x)/~x. 1~ o, i, j = 1, ..., n, xsI~. To prove (P4), we observe
that tl~e constants K2, I = 1, ..., n, can be expressed by the components
of v and w as follows:

1 - v  l - w
= (1 — w ) h / 2 = w 

1 (1 — ~~ )
1/2

V
1 1

K. • 
1 -_vj ( 1_-_w1~1\~/2 1 -_w~ fl_-_v~+i\’/2 (6)

1 V
i 

w1_ 1 ) wi V~_~

j  = 2, ..., n — 1 ,

K 
l V n _ l/2

l _ W n _ l/z
fl V n-I w n-l . -

The equality of the pro4uct of the left sides with that of the right
sides in (6) yields, after cancellation,

(~:~
)2

FT ~:~ =(i~) 2 IT ‘

1—2 i•l

a contradiction unless v. — w ., 1 1, ..., n , i.e., V = w.

r
8I

~~- ,-~~~~.
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We show ne~~that F has exac9y one fixed point in I~. First, let
6~>o be such that 6~<6i = am (a (1+m) ; (1 + M)2; 1/2), where m — mm
(K 1, .... K~) and N • max (K1, ..., Ks). If xcI~ (60): ó0’~ xj~~1 —

1 1, ..., n, then it is easy to verify that the components of F satis—
fy the inequalities

.50cf 1(x)<l — 6 , i = 1, . ..,  n. (8)

1n(6o) is compact and convex, F is continuous on I~ (tS0), and, by (8),
PI~(50)CI~ (i50). Therefore, we may apply Brouwer ’s fixed point theorem
to conclude that F has at least one fixed point x~ in In (óo). Further-
more, by the antitonicity of F, the iterations

k+l kv a Fw k = 0, 1... (9)

with initial points (v0) T = (6~, . . .,  6 ), (w0) T = ( 1— 6~,..., l— 6~)
define iterates such that ([1], [3] , (4~)

v0<v ...<v k+l cw k+u ,~ ... i~ w1< w0 (10)

The limits u r n  ~k+l 
= v and iini wk+l a w exist, v~ w, x~ is contained ink + c ~

the order interval <v , w> , and , by the continuity of F , we have v = Fw
and w = Fv from (9). Hence, in view of (5) - (P4) ,  v = w = x* is the
only fixed point of F in I~ (â ). Since the argument can be repeated
with an arbirtary positive 6<6~ and I~ (&0)cI~ (ó)~ it follows that F
has no other fixed point in ‘n besides x~. The unique H-Spline corres-
pondence to (x*) T 

= (xi, x~, ... , x~) is given by H(x) = i~(x) in
(2) with y~ • X~~ ~~~~ + (1 - x~)s ., I = 1, ...n. This completes the
proof of the theorem.

NOTE:
An outline for the proof of the existence and uniqueness of ~~ H-Splinefor a given convex table was presented at the Twentieth Conference of

Army Mathematicians at the U.S. Army Natick Laboratories , Nati ck ,
Massachusetts , May 1974.
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